
Source of Acquisition
NASA Ames Research Center

On-Orbit
Software Analysis

ITC-RTF-04-003 0

Final Report

July 2004

On-Orbit Software Analysis

Overview
PoC: Dr. Susanne I. M o r a Intrinsyx Technologies Corporation,
Center

Introduction

JASA Ames Research

The On-Orbit Software Analysis Research InfiLsion Project was done by Intrhsyx
Technologies Corporation (Intrinsyx) at the National Aeronautics and Space Administration
(NASA) Ames Research Center (ARC). The Project was a joint collaborative effort between
NASA Codes IC and SL, Kestrel Technology (Kestrel), and Intrhsyx.

Problem Statement '

In December 2007, NASA intends to launch the next-generation host systems and payloads
for deployment on-orbit. To mitigate technical and cost .risks, and to ensure fidelity,
reliability, and robustness of the on-orbit software, we applied the C Global Surveyor (&+S>
Tool, developed by Kestrel for NASA ARC, to the Habitat Holding Rack (HHR) software.
The Tool presented an excellent opportunity to evaluate the software, isolate defects prior to
launch, and significantly mitigate potential risks.

The primary objectives of the Project were: -

*

k Discovery and verification of software program properties and dependencies

> Detection and isolation of s o h a r e defects across diffkrent versions of softwik-e

> Coqilation ofhistorical dat2 and technical expertise for htme applicatiors

Application of the Technology to the Target Project
We applied the CGS Tool to the Biological Research Project Rack Interface Controller (B-
RIG), the command and control component of the HHR. The B-RIC formats telemetry data
received fiom payloads for downloading to the ground, and creates HHR and Payload Health
and Status (H&S) data for on-orbit transmission. We chose three B-RIC versions, each
containing five modules, for the Tool infusion, with expected results as follows: discovery
and verification of software program properties and dependencies; detection and isolation of
software defects over dBerent source code versions; measurements of the efficacy of the
CGS Tool; and historical data and technical expertise for fUture applications.

Data Collection and Analysis

We ran the CGS Tool on the B-RIC code on three separate baselined versions and on five
logically distinct modules within each of those versions. After each run, we tabulated the
data for error classification, tabulation of numbers of files, numbers of functions within files,
and tabulation of numberg of stud error within the hctions. We then did data
interpretation, which consisted of data consolidation to single defect classes, error
verification and isolation for severity against the B-RIC code, and cross-correlation between
captured errors and established metrics. Finally, we evaluated the efficacy of the CGS Tool,
which included correctness of error counts against known errors, length and duration of run-
times, and ease of use.

J

We found and isolated two general types of errors: the fist were caused by the test
environment or the CGS Tool, which were not considered valid, and, hence, not serious;
and the second, which were serious and may impact performance. We also evaluated the
efficacy of the Tool.

The environmental andor Tool configuration errors were:

> The R-RTC s o h a r e was tested in R d a d - a l o n e mode, which caused a ntmber of
errors to appear because external hardware or interfaces were not connected.

> There were errors caused by the Tool’s inability to “see” such areas as bit fields
and un-initialized pointers.

> There were false indicators, caused by the structure of the code, which the Tool
could not inventory,

The serious defects in the B-RIC code by order of severity were:

3 There is a serious memory leak in one of the modules.
3 There are un-idtialized arrays of file pointers in the code.

> The run duration for one module indicates potential problems with execution. The
mean run time for that module was 14 hours. The comparative run times for the other
modules ranged fi-om % hour to 2 hours.

> Three of the five modules contain dead code, which simpacts code integrity and may
limit code functionality andor cause delays in execution because of potential
overload of on-orbit platforms.

The CGS Tool was domain-specific and does not readily transform to vario,us applications.
It was also missing a Graphical User Interface (GUI) and had no capability for &tomatic
error classification, which made data isolation and interpretation difficult. To make the Tool
more extensible, we recommended modifications.

2.

saoll?lr?ry ezd LHSOES Learned

The primary objectives of the On-Orbit S o h a r e Analysis Research Infusion Project were
met. The CGS Tool was successfully used to discover and verify program properties and
dependencies, and to detect and isolate software defects. The Tool application to the B-RIC
s o h a r e resulted in data gathering that can be used for comparative evaluation of future B-
RIC Version releases and other software projects. Application of the CGS Tool also resulted

Developers, critical for exportability and continuity of the technology to other programs and
projects.

The secondary objective, incremental validation of the CGS Tool, was also successfully met.
GULISG;~UCWG~ UT applyiug the Tool iu a diffe~eut-thau-wual tuvironruent provided

lessons learned for the Technology Developers about areas where the Tool may be modified
and/or expanded to suit different applications. We continue to interface with the Technology
Developers informally to derive Tool modifications, and to explore fbture uses of the Tool
for other collaborative efforts.

H sdccessf!!!). trmsfmi?2g e q & k &ern thz Techmbgy DzVt1nn-Q “r -*- tc! the AqplicEitinn_s

, .. ’.

Table of Contents

Page

1 .o
1.1
1.2
1.3
1.4

2.0

3 .O
3.1
3.2
3.2:1
3.2.2
3.2.3
3.3
3.3.1
.3.3.2
3.3.3

4.0
5.0
5.1
5.2
6.0

Introduction
Problem Statement
System Background
Project Scope and Delimitation
Approach

Methodology

Data Analyses and Findings
Data Tabulation
Data Interpretation

.

Data Consolidation
Error Verification and Isolation
Cross-correlation to Established Metrics

CGS Tool Evaluation
Error Correctness
Run-time Efficacy
Usability

Summary of Findings
Actions and Recommendations
Actions
Recommendat ions
Acronyms

List of Illustrations

Table 3.1.1
Table 3.1-2
Table 3.1-3
Table 3.1-4
Table 3.1-5
Table 3.3.2-1

Number of Error Counts per Module for Version 5 .O
Number of Error Counts per Module for Version 6.0
Number of Error Counts per Module for Version 7.0
Total Ncidxz of Files per VersionlMCdde
Total Number of FunctiondError per Version/Module
CGS Tool Run-the for B-RIC Version 7.0

3

4
4
6
6
6
7
7
7
8
8

9
10
10
10
11

1.0' Introduction
The On-Orbit S o h a r e Analysis Research Infusion Project was done by Intrinsyx
Technologies Corporation (Intrinsyxj at the National Aeronautics and Space Administration
(NASA) Ames Research Center (ARC). The Project was a joint collaborative effort between
NASA Codes IC and SL, Kestrel Technology (Kestrel), and Intrinsyx.

The On-Orbit Sokmre AnalyEiE Find Report &onicles the Projcct and documents thc
findings.

1.1 Problem Statement

In December 2007, NASA intends to launch the next-generation host systems and payloads
€or deplqpent on-orbit. To mitigate technical and cost risks, and to ensure fidelity,
reliability, and robustness of the on-orbit software, we applied the C Global Surveyor (CGS j
Tool, developed by Kestrel for NASA ARC, to the Habitat Holding Rack (HHR) software.
The Tool preseilted an excellent opportunity to evaluate the software, isolate defects prior to
launch, and significantly mitigate potential risks.

The primary objectives of the Project were:
e

> Discovery and verification of software program properties and dependencies

- 0 - 0. Detection and isolation of software defects across dif€erent versions of software

> Compilation of historical data and technical expertise for future applications
. . ,. <-

A secondary objective was:
> incrernentai validation of the ZGS Tool . *

1.2 System Background
The H H R is the central part of the biological and scientific experiments to be conducted on-
orbit and on the ground for missions following the December 2007 launch.

The Biological Research Project Rack interface Controlier p-R iC j and Centrifuge in te rhe
Controller (C-FUC) are the command and control component of the HHR. The B-RIC
formats telemetry data received fiom payloads for download to the ground, and creates HHR
and Payload Health and Status (H&S) data for on-orbit transmission. The C-RIC is a
derivative of the B-RIC with audio capability and additional payload channels. As noted
below, o d y thc B-RIC wzs analyzed for this Project.

The B-RIC and C-RIC contain circa 50,034 Source Lines of Code (SLOCs) each in the C
programming language. Tie software is in flux with version releases done on an incremental
basis. There are known defects in the software, documented in Software Problem Reports
(SPRs) that are tracked for resohtion.

1.3 Project Scope and Delimitation

The initial intent of the proposed Project was to apply the CGS Tool to the B-RIC and C-RIC
software. However, the C-RIC s o h a r e was not ready within the time Erne of the Project.

As noted above, the C-RIC is derived f b m the B-RIC, and the differences between the C-
RIC and the latest B-NC Version are 20 SLOCs. The decision was made to use thee
Versions of the B-RIC source code in place of the C-RIC. Doing so provided an equal
representation of the data and errors, and did not impact the goals of the Project.

The expected benefits include the following:

P S o f h x e program verification to isolate defect classes, mch sq array out-of-bun&,
and un-initialized variabledpointers

> Software program analyses for precision and scalability, including false positives

> Data consolidation for comparative analyses

> Benchmarking of the CGS Tool for purposes of efficacy

1.4 Approach

The approach for conducting data gathering and &lysis with the CGS Tool consisted of
three phases, delineated below.

> Phase I - R e Data Gathering. This Phase began with a formal Kick-off Meeting,
followed by training fiom the Kestrel stafT, the CGS Technology Developers to the
Intrinsyx sta;Etl the Applications Developers in the use of the Tool. The B-RIC source
code was prepared for installation on a Laptop, and configured with Unix and the
required CGS applications tools. Concurrently, the proposed approach and metria
were solidified. The Phase started on 4 March, and ended on 19 March.

> Phase I1 - Data Gathering. This Phase started with the Principal Investigator (PI) and
the Applicatioo Developers configuring the required fields for data gathering and
metrics on the Laptop that housed the Tool and the B-RIC code. Versions 5 , 6 , and 7
of that code were segmented into the five logical modules, and run with the CGS
Tool. The raw data were gathered and consolidated for subsequent analysis. The
Phase started on 22 March, and ended on 30 April.

> Phase I11 - Post Data Gathering Analysis. Phase 111 consisted of data consolidation
and preliminary analyses of all code runs, preparation of a Draft Report, thorough
analyses of the defects discovered with the CGS Tool, and preparation and delivery of
the Final Report. The Phase started on 3 May, and ended on 1 July, slightly ahead of
the project 12 July end of the Project.

2

.

2.0 Methodology

The methodology for isolating defects entailed running the B-RIC code Versions 5, 6, and 7
with the CGS tool separately for each Version, and for each of the five modules in the
Versions. Those modules are:

> Video Digitalization Compression Card (VDCC). The software module for the
VDCC provides the main entry points for all modules running on the Card. The main
module initializes message queues, spawns all tasks, and monitors H&S on the Card.

P High Rate Link Card (HRLC). The HRLC soRwirre module is the mah entry point
for all other modules running on the Card. Like the VDCC, it initializes message
queues, spawns tasks, and monitors H&S. It contains 16,168 SLOCs.

> Serial Card 1553 (SC1553). The software module on this Card is the 1553
comunications link to the HHR. It contains 9,006 SLOCs.

> Serial Card (SERC). The SERC s o h a r e module is the serial communications link to
the HHR. It contains 874 SLOCs.

J+ Main Controller Card (MCC). This software module is the-main c&troller for the
HHR. It containS-19,959 SLOCs.

Once the code rum were complete, (ne e s t steps consisted of data tabuiaticm for each
Version md mod'lb, in the folhvkig manner:

It coritqins 4,027 SLOCs. * -

I

-
-

^. >', Error classification

> Tabdation of number of files

> Tabulation of number of functions within files

> Tabulation of numbers of actual errors @e&) Within functions

The second steps in the methodology consisted of data interpretation, including:

> Data consolidation to single defect classes

> Error vai€cation a d isolation for sever';iy against the €3-RIC cod3

P Cross-correlation between captured errors and established metrics

The third md f b l step is i?fl evdution ofthe eEcacy ofthe CGS Tool, l,n_ccfdir!g:

P Correctness of error count against known errors

> Length and duration of run-times

> Easeofuse

,

3

3.0 Data Analyses and Findings

3.1 Data Tabulation

The CGS Tool provides a cumulative count by color code, as follows:

9 c (Cretll); No e~-mrs or defects detected
> O(0range): Potential errors, not enumerated

> R(Red): Actual errors
> U(Unreachab1e) Unreachable operations, dead code

Version 6 VDCC HRLC SCI 553 SERC

Green 1,267 1,03 1 1,499 330

Orange 4,895 1,920 1,973 1,078

Red 225 233 536 105

Unreachable 0 4 3 3

Tables 3.1-1 through 3.1-3 Lqict the raw data count for each B-RIC Version.

MCC

1,277

2,535

3 04

0

- Table 3.1-1 Number of Error Counts pea Module for Version 5

4

‘

Version 7

Table 3.1-3 Number of Error Counts per Module for Version 7

VDCC HRLC SCl553

1,755

1,907

3 72

~~

Green 1 1,619 I 1.252

SERC

333

1,097

108

Orange I 4,553 I 1,929

I

5.0

6.0

’ Red 1 314 1 13 I

i i

19 27 12 8 21

19 26 12 9 21

Unreachable

7.0 1 25 1 j 25 I 9 23

’

MCC

1 j31 1

2,600

3 12

0

Table 3.1-4 depicts the number of files in each module by Version. There is no statistical
significance to the number of files, but there are correlations between that number ’and the
enumerated functions and errors. There may also be a correlation between file number and
efficacy of the CGS Tool.

1 Table 3.1~4 Total Number of Files per Version/Module . .I

~

The CGS Tool detects errors within files for each hnction by line number. Because the
functions may appev on a number of lines within the code, we counted the errors for all
instaxes as one. For example, in the SC1553 module, the file BC.C cor,tains a bc t ion
hit-BC-Message-Link, which shows up on 45 different lines of code. The error is
counted as one “class” with multiple instances. Table 3.1-5 contains the total
functioderror count.

5

Table 3.1-5 Total Number of FunctiondErrors per VersiodModule

Version mcc HRLC SC1553 SERC MCC

5.0 62 58 42 23 42
-

6.0 61 60 43 23 43

7.0 57 4 58 21 41

6

3.2.2 Error Verification and Isolation
The code defects are listed below by order of severity.

P There is a serious memory leak in the HRLC module. We suspected a problem,
which the CGS Too! did not register- We mhseqiimtly applied another tool to the
module and found the leak.

P There are un-initialized mays of File Pointers in the code.

P The run duration for the VDCC module indicates potential problems with execution.
As illustrated in Table 3.3.2-1, the mean run time for that module was 14 hours. The
comparative run times for the other modules ranged fiom % hour to 2 hours.

P As illustrated in Tables 3.1-1 through 3.1.3, three of the. five modules contam dead
code, which impacts code integrity. The HRLC, SC1553, and SERC have several
instances of dead code, which may limit code hctionality andor cause delays in
execution because of potential overload of on-orbit platforms.

3.2.3 Cross-correlation to Established Metria
Cross-correlation to metrics consisted of the following: *

i .

. .

P Deadcode . ..

P Misuse - . (arrays out-of-bounds)

> Initialization (no vales: ~XICOKCX~ vahles)

P Null pointer de-referencing

Data analyses of the code runs show instances of dead code, as discussed above. The CGS
Tool does not distinguish misuse, initialization, and null pointer de-referencing.

3 3 CGS TGO~ Evaluation

3.3.1 Error Correctness

In addition to total checking time, which is enumerated in paragraph 3.3.2 Mow, other
metrics against which the CGS Tool was applied inclmle:

‘ :

P N m k s of false positives

The i7hibeis of false positives, iildiciitted as Grange, for all modules and Versions were very
high. Tables 3.1-1 through 3.1-3 illustrate.

The percentage correcthconect findings are derived with the following formula:
G+R+U

G+R+O+U

Raw tabulation across Versions and modules show mean correctness of 65%. When errors
that are caused by the CGS Tool not “seeing” functions are removed fiom that equation, the
mean is 90%.

7

3.3.2 Run-timeEfficacy
Table 3.3.2-1 illustrates the mean duration of the runs for all the B-RIC modules.

‘

’Table 3.3.2-1 CGS Tool Kun-time

Module VDCC

Mean 14
Time in
Hours

HRLC 1 SC1553 1 SERC 1 MCC

As discussed above, the VDCC mean run-time of 14 hours is disproportionate to the other
modules, including the MCC, which is much larger in SLOCs.

3.3.3 Usability

The CGS Tool has been used primarily on very large flight software applications at the Jet
Propulsion Laboratory (JPL) and at MSFC. The application of the Tool at NASA ARC on
the B-RIC code diverged from the norm because of the smaller scale and different findings.
For the Technology Developers, the results of the B-RIC research irihsion are lessors
learned about areas thzt the TOG^ does nc,t “see”. Those lessons l e a d have rcsulted in
evaluations of potential enhancements to the CGS Tool.

Application of the CGS Tool to the HHR B-RIC code rqsulted in finding defects that were
not previously demonstrated in test and verification of the B-RIC. The most significant of
those is the memory leak in the HRLC module. Those findings warrant M h e r investigation.

For the Technology Developers, the divergence fiom the norm of using the CGS Tool on the
B-RIC has resulted in evaluating the Tool’s efficacy across different applications, and
locating potential areas where the Tool may warrant modification. According to the
Technology Developers, the usability of the Tool would be imprGved if it computed
information differently to make it more readable.

For the Application Developers, training in, and use of, the CGS Tool has resulted in
knowledge that can be trans€erreci to other mission-critical software development efforts for
NASA.

8

4.0 Summary
The primary objectives of the On-Orbit Software Analysis Research Infusion Project were
met. The CGS Tool was successfully used to discover and verify program properties and
dependencies, and to detect and isolate software defects. The Tool application to the B-RIC
software resulted in data gathering that can be used for comparative evaluation of future B-
RIC Version releases and other sofbvare prnjects, Application of the CGS Tool also remlted
in successfblly transferring expertise fiom the Technology Developers to the Applications

projects.

The s e c o z k cbjectiie, incremental validation of the CGS Tool, was also successfully met‘.
The consequences of applying the Tool in a different-than-usual environment provided
lessons learned for the kechnology Developers about areas where the Tool may be mod5ed
and/or expanded to suit d&krent applications.

The most significant findings are highlighted below.

Developers, critical for exportability and continuity of the technology to other programs and r <

~ . -

P There are serious defects in the B-RIC code that may impact mission-critical
performance and operations

k The B-RIC code structure is non-standard, which made reading oupputs of the CGS
Tool dimcult.

P Application of the CGS Tool to a non-jlight application provided good insight for ‘

the Technology Developem into desired and/or required Tool modifications for
dinerent sofrware applications.

. ,” ..

-.
k Application of the CGS Tool provided critical transfer of technology applicution

from the Technology Developers to the Applications Developers, establishing a .
good bridge for futtire technology infusiom .

9

5.0 Actions and Recommendations

5.1 Actions

Application of the CGS Tool to the B-RIC code yielded significant results by identifying
defects, not previously documented. Although there are limitations to the Tool, we are
confident that those limitations did not detract fiom true findings, primarily because we did a
sulslaulial aruuuul of “manual“ extraction fiom the data to verify results.

The defects are documented and will be tracked and monitored to closure via the Habitat
Holding Rack Open S o h a r e Problem Report Database, and the Verification Closure Report
(VCR) Database. There are planned future version releases, which can be re-tested using the
same methodology as the one applied in this Project to verlfy that defects are corrected prior
to launch. Re-test with the existing CGS Tool will yield correctiodno-correction of the
errors found in our analyses; if the CGS Tool is modified prior to re-test, there may be
additional errors.

5.2 Recommendations

As noted above, application of the CGS Tool to the B-RIC code diverged fkom previous
applications. The divergence showed limited extensibility of the Tool. The CGS Tool is
domain-specific, using I S 0 C; the B-RIC uses GCC Extension. The B-RIC code is written in
complex Bit-Structure, which the CGS TooXdoes not “see”. There is currently no Graphical
User Interface (GUI) and no capability for automatic error classification, which makes data
isolation and interpretation difficult.

To maximize the efficacy of the CGS Tool for fbture on-orbit andor ground systems’
zppfic&tion, we recommend the followiog:

> Add a GUI to enhance user-fiiendliness and readability

> M o w the Tool to include specific error classes

> Include automated error classification

> M o w the Tool to be structurally independent

> Add automatic isolation of dead code

. .
*. ”

6.0 Acronym

ARC
BRP
B-RIC
CGS
c-RIC
GUI
HHR
HRLC
H&S

I SPL ,

MCC
MSFC
NASA
PI
RA
SC1553
SERC
SLOC
SPR
VCR
VDCC

I

I

Ames Research Center
Biological Research Project
BRP-Rack Interface Controller
C Global Surveyor
Centn’fiige-R ack Interface Controller
Graphical User Interface
Habitat Holding Rack
High Rate Link Card
Health and S t m
Jet Propulsion Laboratory
Main Contro’Her Module
Marshall Space Flight Center
National Aeronautics and Space Administration

Research Assistant
Serial Card 1553
Serial Card
Source Line of Code
Software Problem Report
Verifkatioh Closure Report
Video Digitalization Compression Card

Principal Investigator

..

